ICLM Journal Club

From LMP Journal Club
(Redirected from Main Page)
Jump to: navigation, search

This Week

Dean Buonomano

Title: Remembering to Freeze: Prefrontal neuronal assemblies temporally control fear behaviour

Precise spike timing through the coordination and synchronization of neuronal assemblies is an efficient and flexible coding mechanism for sensory and cognitive processing. In cortical and subcortical areas, the formation of cell assemblies critically depends on neuronal oscillations, which can precisely control the timing of spiking activity. Whereas this form of coding has been described for sensory processing and spatial learning, its role in encoding emotional behaviour remains unknown. Fear behaviour relies on the activation of distributed structures, among which the dorsal medial prefrontal cortex (dmPFC) is known to be critical for fear memory expression. In the dmPFC, the phasic activation of neurons to threat-predicting cues, a spike-rate coding mechanism, correlates with conditioned fear responses and supports the discrimination between aversive and neutral stimuli. However, this mechanism does not account for freezing observed outside stimuli presentations, and the contribution of a general spike-time coding mechanism for freezing in the dmPFC remains to be established. Here we use a combination of single-unit and local field potential recordings along with optogenetic manipulations to show that, in the dmPFC, expression of conditioned fear is causally related to the organization of neurons into functional assemblies. During fear behaviour, the development of 4 Hz oscillations coincides with the activation of assemblies nested in the ascending phase of the oscillation. The selective optogenetic inhibition of dmPFC neurons during the ascending or descending phases of this oscillation blocks and promotes conditioned fear responses, respectively. These results identify a novel phase-specific coding mechanism, which dynamically regulates the development of dmPFC assemblies to control the precise timing of fear responses.

Related paper: http://www.nature.com/nature/journal/v535/n7612/abs/nature18630.html

About Us

Introduction

The Integrative Center for Learning and Memory (ICLM) is a multidisciplinary center of UCLA labs devoted to understanding the neural basis of learning and memory and its disorders. This will require a unified approach across different levels of analysis, including;

1. Elucidating the molecular cellular and systems mechanisms that allow neurons and synapses to undergo the long-term changes that ultimately correspond to 'neural memories'.

2. Understanding how functional dynamics and computations emerge from complex circuits of neurons, and how plasticity governs these processes.

3. Describing the neural systems in which different forms of learning and memory take place, and how these systems interact to ultimately generate behavior and cognition.

History of ICLM

The Integrative Center for Learning and Memory formally LMP started in its current form in 1998, and has served as a platform for many interactions and collaborations within UCLA. A key event organized by the group is the weekly ICLM Journal Club. For more than 10 years, graduate students, postdocs, principal investigators, and invited speakers have presented on topics ranging from the molecular mechanisms of synaptic plasticity, through computational models of learning, to behavior and cognition. Dean Buonomano oversees the ICLM journal club with help of student/post doctoral organizers. For other events organized by ICLM go to http://www.iclm.ucla.edu/Events.html.

Current Organizers:

Walt Babiec (O'Dell Lab) & Helen Motanis (Buonomano Lab)

Current Faculty Advisor:

Dean Buonomano


Past Organizers:

i) Anna Matynia(Aug 2004 - Jun 2008) (Silva Lab)

ii) Robert Brown (Aug 2008 - Jun 2009) (Balleine Lab)

iii) Balaji Jayaprakash (Aug 2008 - Nov 2011) (Silva Lab)

iv) Justin Shobe & Thomas Rogerson (Dec 2011 - June 2013) (Silva Lab)

Wiki Newbies

Consult the User's Guide for information on using the wiki software.