ICLM Journal Club
This Week - 22 November 2019 (9:30 a.m., Gonda 2nd Floor Conference Room)
Speaker: Alicia Izquierdo
Title: “Chemogenetic modulation and single-photon calcium imaging in anterior cingulate cortex reveal a mechanism for effort-based decisions”
Abstract: The anterior cingulate cortex (ACC) is implicated in effort exertion and choices based on effort cost, but it is still unclear how it mediates this cost-benefit evaluation. Here, rats were trained to exert effort for a high-value reward (sucrose pellets) in a progressive ratio lever pressing task. Trained rats were then tested in two conditions: a no-choice condition where lever pressing for sucrose was the only available food option, and a choice condition where a low-value reward (lab chow) was freely available as an alternative to pressing for sucrose. Disruption of ACC—via either chemogenetic inhibition or excitation—reduced lever pressing in the choice, but not in the no-choice, condition. We next looked for value coding cells in ACC during effortful behavior and reward consumption phases during choice and no-choice conditions. For this, we utilized in vivo miniaturized fluorescence microscopy to reliably track responses of the same cells and compare how ACC neurons respond during the same effortful behavior where there was a choice versus when there was no-choice. We found that lever-press and sucrose-evoked responses in the same neurons were significantly weaker during choice compared to no-choice sessions, which may have rendered them more susceptible to chemogenetic disruption. Taken together, findings from our interference experiments and neural recordings suggest that a mechanism by which ACC mediates effortful decisions is in the discrimination of the utility of available options. ACC regulates these choices by providing a stable population code for the relative value of different options.
Relevant Paper(s): https://www.biorxiv.org/content/10.1101/792069v1
About Us
Introduction
The Integrative Center for Learning and Memory (ICLM) is a multidisciplinary center of UCLA labs devoted to understanding the neural basis of learning and memory and its disorders. This will require a unified approach across different levels of analysis, including;
1. Elucidating the molecular cellular and systems mechanisms that allow neurons and synapses to undergo the long-term changes that ultimately correspond to 'neural memories'.
2. Understanding how functional dynamics and computations emerge from complex circuits of neurons, and how plasticity governs these processes.
3. Describing the neural systems in which different forms of learning and memory take place, and how these systems interact to ultimately generate behavior and cognition.
History of ICLM
The Integrative Center for Learning and Memory formally LMP started in its current form in 1998, and has served as a platform for many interactions and collaborations within UCLA. A key event organized by the group is the weekly ICLM Journal Club. For more than 10 years, graduate students, postdocs, principal investigators, and invited speakers have presented on topics ranging from the molecular mechanisms of synaptic plasticity, through computational models of learning, to behavior and cognition. Dean Buonomano oversees the ICLM journal club with help of student/post doctoral organizers. For other events organized by ICLM go to http://www.iclm.ucla.edu/Events.html.
Current Organizers:
Current Faculty Advisor:
Past Organizers:
i) Anna Matynia(Aug 2004 - Jun 2008) (Silva Lab)
ii) Robert Brown (Aug 2008 - Jun 2009) (Balleine Lab)
iii) Balaji Jayaprakash (Aug 2008 - Nov 2011) (Silva Lab)
iv) Justin Shobe & Thomas Rogerson (Dec 2011 - June 2013) (Silva Lab)
v) Walt Babiec (O'Dell Lab) (2013-2014)
vi) Walt Babiec (O'Dell Lab) & Helen Motanis (Buonomano Lab) (2014-2017)
vii) Helen Motanis (Buonomano Lab) & Shonali Dhingra (Mehta Lab) (2017-2018)
Wiki Newbies
Consult the User's Guide for information on using the wiki software.