Difference between revisions of "ICLM Journal Club"
(→This Week) |
(→This Week) |
||
Line 13: | Line 13: | ||
Neuronal intracellular chloride concentration [Cl(-)](i) is an important determinant of γ-aminobutyric acid type A (GABA(A)) receptor (GABA(A)R)-mediated inhibition and cytoplasmic volume regulation. Equilibrative cation-chloride cotransporters (CCCs) move Cl(-) across the membrane, but accumulating evidence suggests factors other than the bulk concentrations of transported ions determine [Cl(-)](i). Measurement of [Cl(-)](i) in murine brain slice preparations expressing the transgenic fluorophore Clomeleon demonstrated that cytoplasmic impermeant anions ([A](i)) and polyanionic extracellular matrix glycoproteins ([A](o)) constrain the local [Cl(-)]. CCC inhibition had modest effects on [Cl(-)](i) and neuronal volume, but substantial changes were produced by alterations of the balance between [A](i) and [A](o). Therefore, CCCs are important elements of Cl(-) homeostasis, but local impermeant anions determine the homeostatic set point for [Cl(-)], and hence, neuronal volume and the polarity of local GABA(A)R signaling. | Neuronal intracellular chloride concentration [Cl(-)](i) is an important determinant of γ-aminobutyric acid type A (GABA(A)) receptor (GABA(A)R)-mediated inhibition and cytoplasmic volume regulation. Equilibrative cation-chloride cotransporters (CCCs) move Cl(-) across the membrane, but accumulating evidence suggests factors other than the bulk concentrations of transported ions determine [Cl(-)](i). Measurement of [Cl(-)](i) in murine brain slice preparations expressing the transgenic fluorophore Clomeleon demonstrated that cytoplasmic impermeant anions ([A](i)) and polyanionic extracellular matrix glycoproteins ([A](o)) constrain the local [Cl(-)]. CCC inhibition had modest effects on [Cl(-)](i) and neuronal volume, but substantial changes were produced by alterations of the balance between [A](i) and [A](o). Therefore, CCCs are important elements of Cl(-) homeostasis, but local impermeant anions determine the homeostatic set point for [Cl(-)], and hence, neuronal volume and the polarity of local GABA(A)R signaling. | ||
− | [http://www.sciencemag.org/content/343/6171/670.long | + | [http://www.sciencemag.org/content/343/6171/670.long Local Impermeant Anions Establish the Neuronal Chloride Concentration] |
='''About Us'''= | ='''About Us'''= |
Revision as of 18:49, 3 December 2014
This Week
05 December 2014
Time: 09:30 am
Place : Gonda 2nd Floor Conference Room
Title: Local impermeant anions establish the neuronal chloride concentration - Novel options for memory storage?
Speaker: Felix Schweizer
Neuronal intracellular chloride concentration [Cl(-)](i) is an important determinant of γ-aminobutyric acid type A (GABA(A)) receptor (GABA(A)R)-mediated inhibition and cytoplasmic volume regulation. Equilibrative cation-chloride cotransporters (CCCs) move Cl(-) across the membrane, but accumulating evidence suggests factors other than the bulk concentrations of transported ions determine [Cl(-)](i). Measurement of [Cl(-)](i) in murine brain slice preparations expressing the transgenic fluorophore Clomeleon demonstrated that cytoplasmic impermeant anions ([A](i)) and polyanionic extracellular matrix glycoproteins ([A](o)) constrain the local [Cl(-)]. CCC inhibition had modest effects on [Cl(-)](i) and neuronal volume, but substantial changes were produced by alterations of the balance between [A](i) and [A](o). Therefore, CCCs are important elements of Cl(-) homeostasis, but local impermeant anions determine the homeostatic set point for [Cl(-)], and hence, neuronal volume and the polarity of local GABA(A)R signaling.
Local Impermeant Anions Establish the Neuronal Chloride Concentration
About Us
Introduction
The Integrative Center for Learning and Memory (ICLM) is a multidisciplinary center of UCLA labs devoted to understanding the neural basis of learning and memory and its disorders. This will require a unified approach across different levels of analysis, including;
1. Elucidating the molecular cellular and systems mechanisms that allow neurons and synapses to undergo the long-term changes that ultimately correspond to 'neural memories'.
2. Understanding how functional dynamics and computations emerge from complex circuits of neurons, and how plasticity governs these processes.
3. Describing the neural systems in which different forms of learning and memory take place, and how these systems interact to ultimately generate behavior and cognition.
History of ICLM
The Integrative Center for Learning and Memory formally LMP started in its current form in 1998, and has served as a platform for many interactions and collaborations within UCLA. A key event organized by the group is the weekly ICLM Journal Club. For more than 10 years, graduate students, postdocs, principal investigators, and invited speakers have presented on topics ranging from the molecular mechanisms of synaptic plasticity, through computational models of learning, to behavior and cognition. Dean Buonomano oversees the ICLM journal club with help of student/post doctoral organizers. For other events organized by ICLM go to http://www.iclm.ucla.edu/Events.html.
Current Organizers:
Walt Babiec (O'Dell Lab) & Helen Motanis (Buonomano Lab)
Current Faculty Advisor:
Past Organizers:
i) Anna Matynia(Aug 2004 - Jun 2008) (Silva Lab)
ii) Robert Brown (Aug 2008 - Jun 2009) (Balleine Lab)
iii) Balaji Jayaprakash (Aug 2008 - Nov 2011) (Silva Lab)
iv) Justin Shobe & Thomas Rogerson (Dec 2011 - June 2013) (Silva Lab)
Wiki Newbies
Consult the User's Guide for information on using the wiki software.