ICLM Journal Club

From LMP Journal Club
Revision as of 11:31, 28 November 2017 by Hmotanis (Talk | contribs)

Jump to: navigation, search

This Week - 1 December 2017 (9:30 a.m., Gonda 2nd Floor Conference Room)

Speaker: David Glanzman

Title: Silent memory engrams as the basis for retrograde amnesia

Abstract: Recent studies identified neuronal ensembles and circuits that hold specific memory information (memory engrams). Memory engrams are retained under protein synthesis inhibition-induced retrograde amnesia. These engram cells can be activated by optogenetic stimulation for full-fledged recall, but not by stimulation using natural recall cues (thus, amnesia). We call this state of engrams “silent engrams” and the cells bearing them “silent engram cells.” The retention of memory information under amnesia suggests that the time-limited protein synthesis following learning is dispensable for memory storage, but may be necessary for effective memory retrieval processes. Here, we show that the full-fledged optogenetic recall persists at least 8 d after learning under protein synthesis inhibition-induced amnesia. This long-term retention of memory information correlates with equally persistent retention of functional engram cell-to-engram cell connectivity. Furthermore, inactivation of the connectivity of engram cell ensembles with its downstream counterparts, but not upstream ones, prevents optogenetic memory recall. Consistent with the previously reported lack of retention of augmented synaptic strength and reduced spine density in silent engram cells, optogenetic memory recall under amnesia is stimulation strength-dependent, with low-power stimulation eliciting only partial recall. Finally, the silent engram cells can be converted to active engram cells by overexpression of α-p-21–activated kinase 1, which increases spine density in engram cells. These results indicate that memory information is retained in a form of silent engram under protein synthesis inhibition-induced retrograde amnesia and support the hypothesis that memory is stored as the specific connectivity between engram cells.

Papers: Roy et. al., PNAS, 2017 http://www.pnas.org/content/114/46/E9972.short

About Us

Introduction

The Integrative Center for Learning and Memory (ICLM) is a multidisciplinary center of UCLA labs devoted to understanding the neural basis of learning and memory and its disorders. This will require a unified approach across different levels of analysis, including;

1. Elucidating the molecular cellular and systems mechanisms that allow neurons and synapses to undergo the long-term changes that ultimately correspond to 'neural memories'.

2. Understanding how functional dynamics and computations emerge from complex circuits of neurons, and how plasticity governs these processes.

3. Describing the neural systems in which different forms of learning and memory take place, and how these systems interact to ultimately generate behavior and cognition.

History of ICLM

The Integrative Center for Learning and Memory formally LMP started in its current form in 1998, and has served as a platform for many interactions and collaborations within UCLA. A key event organized by the group is the weekly ICLM Journal Club. For more than 10 years, graduate students, postdocs, principal investigators, and invited speakers have presented on topics ranging from the molecular mechanisms of synaptic plasticity, through computational models of learning, to behavior and cognition. Dean Buonomano oversees the ICLM journal club with help of student/post doctoral organizers. For other events organized by ICLM go to http://www.iclm.ucla.edu/Events.html.

Current Organizers:

Shonali Dhingra & Helen Motanis

Current Faculty Advisor:

Dean Buonomano


Past Organizers:

i) Anna Matynia(Aug 2004 - Jun 2008) (Silva Lab)

ii) Robert Brown (Aug 2008 - Jun 2009) (Balleine Lab)

iii) Balaji Jayaprakash (Aug 2008 - Nov 2011) (Silva Lab)

iv) Justin Shobe & Thomas Rogerson (Dec 2011 - June 2013) (Silva Lab)

v) Walt Babiec (O'Dell Lab) (2013-2014)

vi) Walt Babiec (O'Dell Lab) & Helen Motanis (Buonomano Lab) (2014-2017)

Wiki Newbies

Consult the User's Guide for information on using the wiki software.